Predictive modeling of biomass component tradeoffs in Brassica napus developing oilseeds based on in silico manipulation of storage metabolism.
نویسندگان
چکیده
Seed oil content is a key agronomical trait, while the control of carbon allocation into different seed storage compounds is still poorly understood and hard to manipulate. Using bna572, a large-scale model of cellular metabolism in developing embryos of rapeseed (Brassica napus) oilseeds, we present an in silico approach for the analysis of carbon allocation into seed storage products. Optimal metabolic flux states were obtained by flux variability analysis based on minimization of the uptakes of substrates in the natural environment of the embryo. For a typical embryo biomass composition, flux sensitivities to changes in different storage components were derived. Upper and lower flux bounds of each reaction were categorized as oil or protein responsive. Among the most oil-responsive reactions were glycolytic reactions, while reactions related to mitochondrial ATP production were most protein responsive. To assess different biomass compositions, a tradeoff between the fractions of oil and protein was simulated. Based on flux-bound discontinuities and shadow prices along the tradeoff, three main metabolic phases with distinct pathway usage were identified. Transitions between the phases can be related to changing modes of the tricarboxylic acid cycle, reorganizing the usage of organic carbon and nitrogen sources for protein synthesis and acetyl-coenzyme A for cytosol-localized fatty acid elongation. The phase close to equal oil and protein fractions included an unexpected pathway bypassing α-ketoglutarate-oxidizing steps in the tricarboxylic acid cycle. The in vivo relevance of the findings is discussed based on literature on seed storage metabolism.
منابع مشابه
Predictive Modeling of Biomass Component Tradeoffs in Brassica napus Developing Oilseeds Based on in Silico Manipulation of Storage Metabolism1[W][OA]
Seed oil content is a key agronomical trait, while the control of carbon allocation into different seed storage compounds is still poorly understood and hard to manipulate. Using bna572, a large-scale model of cellular metabolism in developing embryos of rapeseed (Brassica napus) oilseeds, we present an in silico approach for the analysis of carbon allocation into seed storage products. Optimal...
متن کاملQuantitative Multilevel Analysis of Central Metabolism in Developing Oilseeds of Oilseed Rape during in Vitro Culture.
Seeds provide the basis for many food, feed, and fuel products. Continued increases in seed yield, composition, and quality require an improved understanding of how the developing seed converts carbon and nitrogen supplies into storage. Current knowledge of this process is often based on the premise that transcriptional regulation directly translates via enzyme concentration into flux. In an at...
متن کاملIntegration of a constraint-based metabolic model of Brassica napus developing seeds with 13C-metabolic flux analysis
The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae) developing seeds...
متن کاملComparative deep transcriptional profiling of four developing oilseeds
Transcriptome analysis based on deep expressed sequence tag (EST) sequencing allows quantitative comparisons of gene expression across multiple species. Using pyrosequencing, we generated over 7 million ESTs from four stages of developing seeds of Ricinus communis, Brassica napus, Euonymus alatus and Tropaeolum majus, which differ in their storage tissue for oil, their ability to photosynthesiz...
متن کاملProteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis.
Brassica napus (cultivar Reston) seed proteins were analyzed at 2, 3, 4, 5, and 6 weeks after flowering in biological quadruplicate using two-dimensional gel electrophoresis. Developmental expression profiles for 794 protein spot groups were established and hierarchical cluster analysis revealed 12 different expression trends. Tryptic peptides from each spot group were analyzed in duplicate usi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 160 3 شماره
صفحات -
تاریخ انتشار 2012